(*) Contractibility of the two complex
Sq.r: compact oriented surface w/ genus q.r boundary components
Fix two points ba, b, on the boundary (may or may not lie
on source body component)
The Disordered the Complex is a subcplex of the
full are complex
$$d(Sq.r., j.ba, b_1)$$

werkees \leftrightarrow isotrypt classes of area (no self intersections)
w/ endpts in $2b_1, b_1$?
P-simplices $\leftrightarrow (p+i)$ area that can be realized
pairwise disjointly (except at endpts)] are
pairwise disjointly (except at endpts)] are
 $\frac{100}{2}$
The A(S, ? ba, b, ?) is contractible
Fix an area of in A(S, ? ba, b, ?) and an orientation on it.
Will construct a retraction of the complex onto Star(or)
 $= 25 |x \cup s \in A(S)$?
Note: Vertice(stor(x)) = x \cup ? area disjoint from x?
 $f(S) = \frac{1}{5}$
 $f(S) = \frac$

Proof Strategy: "Badness" Arguments <u>Note</u>: When $q \ge 1$, $\frac{2q+\nu-5}{2} < 2q+\nu-3$ So for $k \leq \frac{2q+2-5}{2}$, given a map $f: S^k \rightarrow D'(S_{q,r}; b_0, b_1)$, we can extend it: $S^{k} \xrightarrow{f} D^{*}(Sq,r;b_{0},b_{1})$ $\int \int \int f^{k+1} \frac{\hat{f}}{\hat{f}} B_{0}(Sq,r;b_{0},b_{1})$ <u>Aim</u>: Modify \hat{f} until dotted map exists. Here's the broad idea: The image of f consists of "good" and "bad" simplices $\in \mathcal{D}(S; \mathbf{b}, \mathbf{b}) \notin \mathcal{D}(S; \mathbf{b}, \mathbf{b})$ We want to "push" if off all the bad simplices. Eq.: Here's why we're able to do this in the above example:

- The link of σ is ≅ S°, and maps to the link of z
 Moreover, it maps only to good simplices in lk z.
- Since lkz is 0-connected, we've able to fill this in with a 1-ball.
- $f_{1star(\sigma)}$ and this 1-ball now bound a 2-ball, using which we're able to homotope \hat{f} off of z.

Tools to do this:
() Assume
$$\hat{f}: D^{k+1} \rightarrow b_0(Sq,r; b_0, b_1)$$
 is simplicial.
PL Topology \rightarrow can assume that simplicial dimeture on D^{k+1}
is st. $lk_{qen} \in \mathbb{C} \subseteq S^{k+p}$, where $p \ge dim 6$,
 $\sigma \notin \partial D^{k+1}$
(2) For a simplex \equiv in $B_0(Sq,r; b_0, b_1)$,
 $\cdot z$ is "good" if $z \in D(Sq,r; b_0, b_1)$
 $\cdot z$ is "bad" if $z = \langle x_0, x_1, \dots, x_p \rangle$ and:
 $d_0 \quad d_1 \quad d_p \quad d_1 \quad d_0$
Note: how simplex wat in $D(Sq,r; b_0, b_1)$ contains a bad
simplex bs a face.
So it?! be enough to homotope \hat{f} off all the bad
simplices.
(3) Let $\sigma \in D^{k+1}$ be of maximal dimension $st = \hat{f}(s)$ is bad.
Then, maximality $\Rightarrow \hat{f}(lk(\sigma)) = lk(z)$,
 $ue?!$ be able to fill $\hat{f}_{lk(\sigma)}$ with a ball,
and homotope \hat{f} as explained above
 $d_1 = \frac{\hat{f}(lk(\sigma))}{\hat{f}(lk(\sigma))}$ is contained above

б

Back to badness:
Suppose
$$G = [v_0, v_1, ..., v_p]$$
 is maximal set:
 $C = \hat{f}(\sigma) = \langle d_0, d_1, ..., d_p; \rangle$ is bad.
Suppose $\gamma = [w_0, w_1, ..., w_q] \in lk G$.
Let $\langle \beta_0, \beta_1, ..., \beta_{q_1} \rangle = \hat{f}(\gamma)$

 $P_{R} \xrightarrow{R_1} d_0 \xrightarrow{d_1} \xrightarrow{R_1} \frac{1}{R_1 \cdot r_1 \cdot d_1} \xrightarrow{d_0}$
Then, maximality of G implies:
 $P_{i} \langle d_{0} | a_{i} + \frac{1}{R_1 \cdot r_1 \cdot d_1} \xrightarrow{d_0}$
Then, maximality of G implies:
 $P_{i} \langle d_{0} | a_{i} + \frac{1}{R_1 \cdot r_1 \cdot d_1} \xrightarrow{d_0}$
Then, maximality of G implies:
 $P_{i} \langle d_{0} | a_{i} + \frac{1}{R_1 \cdot r_1 \cdot d_1} \xrightarrow{d_0}$
Then, maximality of G implies:
 $P_{i} \langle d_{0} | a_{i} + \frac{1}{R_1 \cdot r_1 \cdot d_1} \xrightarrow{d_0}$
This implies that $\langle \rho_0, \rho_1, ..., \rho_1 \rangle$ can be identified
with a disordered are system on the surface
 $S' = S \langle \langle d_{0}, ..., d_p \rangle$.
 $a_{i} d_{i} = \frac{1}{R_1 \cdot r_1 \cdot q_1}$
By our Lemma, the genus $q' \circ f S' is \geq q - p - 1$.
Thus $D(S'; b_0', b_1') is (2(q - p - 1) - 4) - connected.$
Note: $k - p \leq \frac{2q + 2^{-5}}{3} - p = \frac{2q - 2p - 5 + 2^{-5}}{3} = \frac{2(q - p - 1) - p - 3 + 2^{-5}}{3}$
 $\leq \frac{2(q - p - 1) - 4}{3}$ when $p \geq 2$ or $p \leq 1$.